*Basic Graph Theory
-G:simple graph, n:order of G, m:size of G, t:the number of triangle of G
-invariant map의 예:order, size, δ(G), d(G), Δ(G), g(G), G(G), components 개수, D(G), r(G), central,
-sum of all degree = 2m
-the number of vertices of odd degree is always even
-d(G) = 2m/n
-r(G)<=D(G)<=2r(G)(link)
-Every G with at least one edge has a subgraph G' s.t. 2*δ(G') > m(G') >= m(G)
-Every G contains a path of length δ(G)
-Every G contains a cycle of at least length δ(G)+1(if δ(G) >= 2)
-Every G containing a cycle satisfies g(G) <= 2*D(G) + 1
-if r(G) <= k and Δ(G) <= d, then n <= d * (d-1)^k * 1/(d-2)
-n >= n_0(δ(G), g(G))
-if δ(G) >= 3, then g(G) < 2 * log_(2)(n)
-if m(G) >= m >= 2 and g(G) >= g, then n >= n_0(m,g)(Alon, Hoory, and Linial 2002)
-(Mader)if m(G) >= 4k, then G has a (k+1)-connected subgraph G' s.t. m(G') > m(G) - 2k(link1)(link2)
-D(G)>=3 이면 D(bar(G)) <= 3(link)
-a_k:dec seq of positive integers with n terms일 때
-a_k:graphical이면
-a_1 <= n-1
-sum over k a_k는 even
-for b_j s.t. a_k majorize b_j, b_j:graphical
-(Characterization of graphical seq, Havel-Hakimi Theorem)
-a_k:graphical
iff a_k의 a_1을 없애고 a_2부터 총 a_1개의 terms에 -1해서 얻은 seq도 graphical
(위 thm을 반복해서 적용, 그러다 negative값이 나오면 not graphical 혹은 graphical한거나오면 됨)
iff sum from i=1 to i=tr(Tb(G)) (a_i + 1) <= sum from i=1 to i=tr(Tb(G)) conj(a_k)_i
(for each i=1,2,...tr(Tb(G)), decdseq(G)_i + 1 = conj(decdseq(G))_i iff G:threshold)
-given fixed n, the graph with the smallest D(G) is K_n, the quantity = 1
-given fixed n, the graph with the smallest md_G is K_n, the quantity = 1
-given fixed n, the graph with the largest D(G) is P_n, the quantity = n-1
-given fixed n, the graph with the largest md_G is P_n, the quantity = (n+1)/3
-G has two vertex having the same degree(link)
-G:self-complementary이면 4|n or 4|(n-1)(link)
-G:bipartite iff G has no odd cycles
-About α(G)(V, independence), τ(G)(V, covering), v(G)(E, matching), γ(G)(V, domination)
-α(G)+τ(G) = n
-ν(G) <= τ(G)
-G:odd cycle이면 ν(G) +1 = τ(G)
-G:even cycle이면 ν(G) = τ(G)
-ν(G) = α(L(G))
-G:isolated-free
-γ(G) <= ν(G)
-G has a minimum dominating set U in which every member u in U has epn(u,U)
-G has a star forest F=(S_n1,...,S_nγ) s.t. every v in V(G) belongs to exactly one star, and the centers of the stars form a minimum dominating set.
-About DfG
-Bipartite
-
-About Split Graph
-About cograph, G:cograph
-any cograph may be constrcted using complement and disjoint union
-cograph is closed under complement, finitely many disjoint union
-bar(G):cograph
-G1:cograph, G2:cograph이면 G1+G2도 cograph
-any connected cograph is a join of two graphs(왜냐하면 G1VG2 = bar(bar(G1) + bar(G2))
-Any Cograph is L-integral
-About Threshold Graph
-G:split and cograph, then G:threshold graph
-(Criteria of threshold)if G:threshold, then decdseq(G)_(i+1) = conj(decdseq(G))_i for all i > tr(Tb(G))
-(Characterization of Threshold Graph)G:Threshold
iff G:obtained from K_1 by a seq of operations (i) add an isolated vertex, or (ii) take the complement
iff G:obtained from K_1 by a seq of operations (i) add an isolated vertex, or (ii) add an dominating vertex
iff decdseq(G) is not majorized by any other decdseq
iff for each i=1,2,...tr(Tb(G)), decdseq(G)_i + 1 = conj(decdseq(G))_i
-About genus
-(Euler's Formula)G:connected with genus(G)=0이면 n - m + r = 2, where r:the number of region from G
(증명은 induction on m, G:tree일때와 아닐 때로 구분)
-if G with genus(G)=0
-m <= 3n - 6(즉 no crossing edges로 그래프 그릴려면 m이 그렇게 클 수가 없음)
-δ <= 5
-if G:maximal planar
-every region is bounded by three edges
-every vertex v is the center of a wheel subgraph induced by v and all vertices adjacent to v.
-δ >= 3
-(Kuratowski's Theorem, Criteria of Planar)
:G가 planar iff G does not contain K_5, K_(3,3), or any subdivision of K_5, or K_(3,3) as a subgraph.
-About subgraph
-Every graph G with at least one edge has a subgraph G' with δ(G') > d(G')/2 >= d(G)/2(link)
-G:eulerian iff G:connected and d(vi):even for all i
-for r:even, G:r-regular이면 G has a 2-factor
-t(G)=t(G-e) + t(G with e) for any edge e
-About generated graph
-bar(K_p)Vbar(K_q)=K_(p,q)
-Every topological minor of G is minor of G(역 성립 안함)
-bar(G1+G2) = bar(G1) V bar(G2)(드모르간 같음)
-bar(G1VG2) = bar(G1) + bar(G2)(드모르간 같음)
-G':sub
-(Characterization of Line Graph)
G:line graph
iff E(G) can be partitioned into a set of cliques with the property that any vertex lies in at most two cliques.
(G에서 pendant말고 다른 vertex생각해보면 그때마다 cliques in L(G)생김)
iff each induced subgraph of G on at most six vertices is a line graph
-(Whitney's Line Graph Theorem)G1:Connected and G2:connected일때
G1 graph-iso G2 iff L(G1) graph-iso L(G2) except for G1=K_(1,3), G2=K_3
-δ(G1)>=4 and δ(G2)>=4이면(connected일 필요 없음) G1 graph-iso G2 iff L(G1) graph-iso L(G2)
-G:connected이면 L(G):connected(역은 성립안함)
-G:connected이고 L(G):regular이면 G:regular or semiregular bipartite
-G:connected이고 G graph-iso L(G)이면 G:cycle
-L(G)의 예
-L(K_(1,n))=K_n
-L(P_(n+1))=P_n
-L(C_n)=C_n
-L(G)의 구조
-|V(L(G))| = m
-|E(L(G))| = 1/2 * [sum over i~j (d(vi)+d(vj)-2)] = (1/2 * {sum of all d(vi)^2}) - m
-G=L(G) and G:connected인 것은 C_n뿐(link)
-About quasi-line graph
-G:L(G') for some G'이면 G:quasi-line graph
-G:quasi-line graph이면 G:claw-free
-About Connectivity
-About tree
-G:tree이면
-m=(n-1)
-G has at least Δ(G) leafs, n>=2
-bipartite, 따라서 bipartite성질을 모두 따른다.
-for vi~vj, d(vi)+d(vj) <= n
-center가 1개 or 2개 존재함(증명은 leaf를 없앨 때마다 e(vi)가 -1 그래서 계속 없애다보면 center되는 애나 애들만이 남음)
-edge1개 지우면 component는 정확히 2개, 각각은 다시 tree됨
-d(vi)=s인 vi를 지우면 components는 정확히 s개, 각각은 다시 tree됨
-항상 {v1,v2,...,vn} enumerate가능 s.t. G[{v1,v2,...,vi}]:connected for every i=1,2,3,..,n and vi has a unique nbd in {v1,v2,...,vi-1}
-For any a in N, te v in V(T) s.t. te! component C of T - v with |C| <= max(n-1-a,a) and all other components C_i of T - v with |C_i| <= a(link)
-G:tree(connected acyclic)(link1)(link2)(link3)(link4)(link5)
iff G:1-edge-connected , i.e. minimally connected
iff G+e have a cycle
iff G:connected with n-1 edge
iff for any vi, vj in G, te! path from vi to vj
-About Binary Tree
-te 1/2 * (n+1) vertices s.t. degree=1
-m>=1/2*(n-1)(n-2) + 1이면 G:connected(link)
-δ(G)>1/2*n - 1이면 G:connected(link)
-G:disconnected이면 bar(G):connected
-G:connected이면
-n >= D(G) * δ(G) * 1/3
-항상 {v1,v2,...,vn} enumerate가능 s.t. G[{v1,v2,...,vi}]:connected for every i=1,2,3,..,n
-G contains a normal tree with any specified vertex as its root(root에서 시작해서 아직 안가본 any vertex로 edge따라 이동, 만약에 그런 점이 없을 경우가 오면, 현재 그 점에 가장 처음에 왔던 edge를 따라 이동, 그리고 그런 점이 없을 경우가 root가 된다면 stop, 이렇게 얻은 tree가 normal이 된다.)
-G contains a normal spanning tree with any specified vertex as its root.
-G has at least n-m connected components(link)
-G:connected이면 m >= n-1
-κ(G) <= λ(G) <= δ(G)(link)
-About cutvertex
-(Characterization of cutvertex)G:connected일 때 TFAE
-v:cutvertex
-te u,w in V(G) s.t. u != v and w != v and u lies on every path from u to w .
-v:a point of articulation of G
-About κ(G)
-κ(P_n) = 1
-κ(C_n) = 2
-κ(tree)=1
-About λ(G)
-λ(P_n)=1
-λ(K_n)=n-2
-λ(C_n)=2
-λ(tree)=1
-About hypergraph
-About Directed
-If dG:acyclic, then [n]로 level assign, with no two vertices have the same level, and if vivj is in E(dG) then ni<nj, 가능!
-If dG:acyclic with a longest path of length k, then k+1 is the smallest number of levels in any level assignment of dG
(즉, dG가 acyclic이면 |longest path|+1개의 숫자써서 level assign가능)
-dG* has no loops
-dG* has no closed directed walks(link)
-TFAE
-dG has no cycles
-every strong components of dG consists of one point
-dG is isomorphic to dG*
-dG and dG* have the same number of points
-Every walk is a path
-It is possible to order the points of dG so that AdMT(dG) is UMT(link)
-It is possible to assign levels ni to the points vi in such a way that if vivj is in E(dG) than ni<nj
-dG^t has no loops, asymmetric(arc (a,b)가 있으면 (b,a)는 없음), transitive
-About competition graph C(dG)
-(Opsut 1982)It is an NP-complete problem to compute c#(G)
-c#(G) >= cec(G) - n + 2
-If G without K_3, then c#(G) >= m - n + 2
-If G without K_3 and conncected, then c#(G) = m - n + 2
-Every chordal graph G has c#(G) <= 1 with = iff G has no isolated vertices
-Every interval graph has c#(G) <= 1
-(Opsut 1982)c#(G) <= cec(G)
-(Opsut 1982)c#(G) >= min over vi cvc(N_G(vi)), N_G(vi)를 induced subgraph of G로 보고 계산
-If G is L(G') for some graph G', then cvc(N_G(vi))<=2
-If G is L(G') for some graph G', then c#(G) <= 2 with = iff every v in V(G), cvc(N_G(v)) = 2
-About Matching
-M:maximum matching iff G has no M-augmenting path(link)
-(First Tutte's Theorem)G has a perfect matching iff for any subset U of V(G), odd(G-U)<=|U|
-for every component C with odd order and v in V(C), C - v has a perfect matching
-(Tutte-Berge Formula)ν(G) = 1/2 * min over U:subset of V(G) {(|U| + |V(G)| - odd(G-U))}
-(Konig's Matching Theorem)G:bipartite이면 ν(G) = τ(G)(link)
-(Hall's Marriage Theorem)G:bipartite with partition (A,B) of V(G)일 때,
te M covering A iff for any subset U of A, |N_G(U)|>=|U|(link)
(Marriage Theorem이라 불리는 이유는 다음과 같은 상황을 생각하자. A:남자들의 모임, B:여자들의 모임, 각 남자 mi는 결혼하면 행복할 여자들 Bi가 존재한다. (즉, Bi:nonempty subset of B) 그리고 여자들은 자기를 좋아해주는 남자와 결혼하면 행복하다고 하자. 이때 모든 남자들이 행복한 결혼생활을 할 수 있게 matching시켜줄 수 있는 필요충분조건을 제시함)
-(Gale-Shapley Theorem)Every bipartite graph has a stable matching
-for r>=1, G:r-regular bipartite이면 G has a perfect matching
-G:3-regular and has no bridge이면 G has a perfect matching
-About Coloring
-col(G) = deg(G) + 1
-χ(G) <= χ_l(G) <= col(G) <= Δ(G) + 1.
-χ(G) <= aχ(G)
(aχ(G) and col(G) are incomparable)
-About k-color-critical
-G:k-color-critical이면
-δ(G) >= k-1
-About Homomorphism, Automorphism, Group etc
-Aut(G)=Aut(bar(G))
-χ(G)=the minimum number a s.t. te f:homomorphism from V(G) to V(K_a)
-End(G)는 monoid가 된다.
-Aut(C_n) giso D_2n(아마도?)
-S_[v] <= Aut(J(v,k,i)), as a subgroup
(사실 = 일 때가 많다, 증명은 어렵지만)
-n!/|Aut(G)| = |isomorphism class of G| (즉, vertices개수가 n인 graph중에서 G와 isomorphic인 애들의 개수)
-About Matrices
-MT:irreducible iff dG(MT):strongly connected(link)(other link)
-About Space of a graph
-Let E be a subset of E(G). Then TFAE
-E is in CS(G)
-E is a disjoint union of cycles in G(empty일 수도)
-all vertex degree of (V,E) is even
'수학 > 기본' 카테고리의 다른 글
수학정리(Applications, Adjacent, IcMT, dicMT) (0) | 2016.02.29 |
---|---|
수학정리(Examples, Exercises) (0) | 2016.02.29 |
수학정리(Applications, Combinatorics) (0) | 2016.02.29 |
수학정리(Topological Vector Space, Normed Vector Space) (0) | 2016.02.29 |
수학정리(Topology, Algebraic Topology, Differential Geometry, Metric Space) (0) | 2016.02.29 |