*Topological Vector Space(NVS는 따로, TVS, LCTVS, LBTVS, LKTVS까지 정리)

-TVS에서

-Basic Properties(X:TVS(F), x in X, U:open in X, E:subset of X, a in F)

-(a1+a2)E<a1E+a2E

-translation by x는 X->X인 homeo이다.

-따라서 x+U은 open, E+U도 open(for any subset E)

-local basis for 0만 알면 사실상 top모든 원소 다 아는 셈

-multiplication by a는 X->X인 homeo이다.

-aU도 open

-if U:nbd(0), then aU:nbd(0)

-f:F^n x X^n -> X, f((a1,a2,...,an),(x1,x2,...,xn))=sum of aixi일 때 f는 conti

-X:T2 iff every singleton subset is closed

-다음의 성질을 만족하는 local basis for 0(B_0)는 항상 존재

-if U1 in B_0, te U2 in B_0 s.t. U2+U2<U1 and U2:symmetric(induction쓰면 U2+U2+...+U2<U1도 가능)

-if E1,E2 in B_0, te E3 in B_0 s.t. E3<E1교E2(Basis로써 성립해야됨)

-if x in E1 in B_0, te E2 in B_0 s.t. x+E2<E1(translation이 homeo니까)

-if x in X and E1 in B_0, te a in F s.t. x in aE1(absorbing이란 소리)

-if E1 in B_0 and 0<|a|<=1, aE1<E1 and aE1 in B_0(balanced란 소리)

-(X가 T2이면)intersection of all E1 in B_0 = {0}

-X:T2이면 T3도 된다.

-cl(LS):LS

-LCTVS에서

-LBTVS에서

-LKTVS에서

-f-dim

-TVS(F):T2 iff every singleton is closed

-TVS(F)에서 || ||은 conti이다.(? || ||이란 norm인것 같은데 어떤 norm을 가리키는거지? 나중에 체크)

-f-dim LS는 closed이다.

-F=R(std)일 때만 되는 것들

-R(std)에 norm을 줄 수 있으므로 TVS(R)는 NVS(R)된다.

-F=C일 때만 되는 것들

-C에 norm을 줄 수 있으므로 TVS(C)는 NVS(C)된다.

*Normed Vector Space

-기본적인 성질들

-NVS에서 vector addition, scalar multiplication, || ||은 conti이다.

(Every NVS is TVS)

-cl(LS)도 LS(link)

-|| ||_1과 || ||_2가 equivalent하면 같은 topology를 만듦

-NVS:f-dim 

iff every closed and bdd subset is compact(link)


-f-dim NVS인 경우

-모든 norms은 equivalent(link)

-dim(NVS)=n이면 NVS tiso R^n(std)

-dim(NVS1)=dim(NVS2)=n이면 NVS1 tiso NVS2

-reflexive


-|| ||_1과 || ||_2가 equivalent하면 (NVS,|| ||_1)과 (NVS, || ||_2)는 tiso

-VS가 || ||_1에서 BS가 되고, || ||_2에서도 BS가 된다면, || ||_1과 || ||_2가 equivalent iff te C>0 s.t. ||x||_1 <= C||x||_2 for any x in VS

(즉 각 norms에서 complete되는 norms끼리는 equivalent 판단을 한방향으로만 보여도 된다.)

(증명은 identity를 이용하여 Open Mapping Theorem 적용)

-(Completion of Normed Vector Space)Every NVS has unique completion up to iiso

 (구체적으로는 BS가 존재 s.t. f:NVS->BS linear, injective, isometry, f(NVS):dense in BS인 f가 있는 것)

(혹은 dd(NVS(F))와 Ev_NVS(F)를 생각해서 Ev_NVS(F)(NVS(F))<dd(NVS(F))이고 dd(NVS(F))가 BS인건 아니까, cl(Ev_NVS(F)(NVS(F)))생각하면 됨)

-(Riesz's Lemma)(link)

:For S:proper closed linear subspace of NVS, let 0<a<1, te x_0 in NVS s.t. ||x_0||=1 and diam(x_0,S)>=a

(a=1일땐 성립 안함)

-for X:nvs1, Y:nvs2, XxY:nvs with norm ||(x,y)||:=||x||_1 + ||y||_2

-이 때 XxY:BS iff X:BS and Y:BS

 

-about BS

-(Characterization of BS(F))NVS가 complete iff every abs cv인 series가 cv(link)

-f-dim NVS는 BS이다.

-f-dim NVS에서는 임의의 two norms가 equivalent

-f-dim LS는 closed in NVS(단, base field가 R(std)이나 C일 때만, 만약 Q일 때 생각하면 성립안됨)

-BS의 closed LS는 BS이다.(complete에서 closed subset도 complete되니까)

-X:BS일 때, X:reflexive iff (X)^*:reflexive(link)


-about LT(NVS1,NVS2)인 F

-||F||

=inf{C>=0 s.t. ||F(x)||_2<=C*||x||_1}

=sup over nonzero x in NVS1 {||F(x)||_2/||x||_1}

=sup over unit x in NVS1 {||F(x)||_2}

=sup over ||x||<=1 in NVS1 {||F(x))||_2}

-TFAE(link)

-F:bdd

-F:conti at one pt in NVS1

-F:conti at 0 in NVS1

-F:conti

-F:uniformly conti on NVS1

-{x in NVS1 s.t. ||F(x)||_2<=1}:nonempty interior

-dim(NVS1)<inf이면 F:bdd

-about LT(BS1,BS2)(X:BS1, Y:BS2, U:NVS1, V:NVS2)

-(Extension of Conti Linear Map on nvs)S:dense in X, G:S->Y가 linear, bdd이면 te! F s.t. F:X->Y, linear, bdd, ||F||=||G||(link)

(G가 compact였으면 F도 compact임)

-F:X->Y가 linear, bdd이고 onto이면 for any eps>0, te a>0 s.t. {y in Y s.t. ||y||<a} < F({x in X s.t. ||x||<eps})(link)

-(Open Mapping Theorem)F:X->Y가 linear, bdd이고 onto이면 open이다.(link)

(따라서 F가 injective이기도했다면 X tiso Y)

-(Closed Graph Theorem in BS)F:X->Y가 linear일 때 F:bdd iff F has a closed graph.

-for a set E, C:={all f:E->Y s.t. sup over x in E ||f(x)||<inf}, for f in C, ||f||:=sup over x in E ||f(x)||라 할 때 (C,|| ||)은 BS가 된다.

-(Uniform Boundedness Principle)a collection C:={f:X->U s.t. f:bdd and linear}일 때 if for all x in X, sup over f in C ||f(x)||:finite이면 

sup over f in C ||f||:finite이다.(즉 x마다 bdd이면 X에서 bdd, pointwise bdd->uniform bdd)(link)

-for f:X->Y, f:strongly-strongly conti iff f:weakly-weakly conti(link)


-about LTC(nvs1,nvs2)

-VS가 된다.

-about LTCconti(nvs1,nvs2)

-NVS가 된다.

-dim(LTCconti(nvs1,nvs2)=dim(nvs1)*dim(nvs2)

-LTCconti(nvs1,nvs2):BS iff nvs2:BS(link1)(link2)

-LTCconti(nvs,F):BS(F=R(std) or C이므로 BS이니까)

-about NVS^*, Dual space관련(X:NVS(F), S:linear subspace of X)

-(Hahn-Banach Extension)for S:LS of NVS g:bdd LF(S)일 때 te f:bdd LF(X) s.t. ||f||=||g|| and f=g on S(link)

(Extension of Conti Linear Map과 비교하면, 정의역이 좀더 작아도 쓸수 있는 대신 공역이 애초에 좀더 작은 형태)

-for nonzero x1 in NVS, te bdd LF(NVS) f s.t. ||f||=1 and f(x1)=||x1||(link)

(f-dim NVS이면 LF(NVS)가 다 bdd이니까 당연)

(NVS:nonzero reflexive일 때 (NVS)^*에 적용하면 for f in (NVS)^*, te x in NVS s.t. ||x||=1 and f(x)=||x||)

-for v1,v2,...,vn:lind in nvs and a1,a2,...,an in F, te bdd LF(nvs) f s.t. f(vi)=ai

-||x_0||=sup over unit f in (nvs)^* {|f(x_0)|}=sup over ||f||<=1 in (nvs)^* {|f(x_0)|}

-for S:linear subspace of nvs, x_0 s.t. diam(x_0,S)>=a_0>=0 for some a_0, te bdd LF(nvs) f s.t. f=0 on S and f(x_0)=a_0 and ||f||<=1(link)

-for S:linear subspace of nvs,  x_0 s.t. diam(x_0,S)=a_0>0 for some a_0, te bdd LF(nvs) f s.t. f=0 on S and f(x_0)=a_0 and ||f||=1(link)

-for S:linear subspace of nvs,  x_0 s.t. diam(x_0,S)>0, diam(x_0,S)=max{|f(x_0)| over f:bdd LF(nvs), ||f||<=1 and f=0 on S}

-(nvs)^*가 separable이면 nvs도 separable(countable dense subset)(link)

-Ev_nvs는 isometry도 된다.(linear isometry)(link)

-weak^*관련

-X:reflexive iff weak^* top of X^* = weak top of X^*

-{f_n}:cv weak^* to f이고 X:BS이면 {f_n}:bdd(norm sense) and ||f||<=liminf ||f_n||

-(Alaoglu's Theorem){f in X^* s.t. ||f||<=1}:weak^* compact(link)

-E:weak^* compact iff E:weak^* closed and norm bounded(where X:BS일 때, 증명은 conti(compact):compact이랑, UBP)

-about topologies(X:NVS, top1:X를 TVS로봤을 때 top, top2:weak top from (NVS)^*, top3:induced from norm)

-top2<top3, top1<top3

-즉 weakly open이면 strongly open, weakly closed이면 strongly closed

-top2:T2(즉 hausdorff)

-for f:LF(X)일 때 f:conti in top2 sense iff f:conti in top3 sense

-for x in X, basis at x는 eps, f1,f2,...,fk in (NVS)^*로 만들어짐(유한개의 linear functional)

-top2=top3 iff dim(X)<inf(link)

-for E:nonempty convex subset, E:weakly closed iff E:strongly closed(link)

-E:stongly bdd iff E:weakly bdd(즉 bdd는 weak sense나 norm sense나 같네)(link)

-about cv weakly

-for {x_n} in X, {x_n}:cv weakly to x를 for each f in (X)^*, f(x_n):cv to f(x)로 정의가능

-for {x_n}:cv weakly to x라면, {x_n}:bdd(norm sense) and ||x||<=liminf ||x_n||

-{x_n}:cv weakly to x, and {f_n}:strongly cv to f in (NVS)*이면 {f_n(x_n)}:cv to f(x) in R(std)


-about NVS(C)(NVS(R(std))와 비교 대조 위주로)


-

-IPS(F)관련(symmetric bilinear form에서의 성질 참고)

-inner product로 norm을 만들 수 있다.

-(Cauchy-Schwarz inequality)|<x,y>|<=||x||||y||, 여기서 norm || || 은 from < >

-If X:NVS(F) with norm || || satisfying parallelogram law, then X can be IPS(F) with <x,y>:=1/4 * (||x+y||^2 - ||x-y||^2) (FC일 땐 다른 형태임)

-for E subset of IPS(F), (E)^ㅗ:closed LS and E<(E)^ㅗㅗ, (E)^ㅗㅗ:closed LS containing E

-for LS of IPS(F), LS교(LS)^ㅗ=0(direct sum은 안될 수 있음, X=direct sum of LS, (LS)^ㅗ은 안될 수 있음)

-항상 maximal orthonormal set E={e_i}이 존재한다.(countable인지를 모름)

-E^ㅗ=0

-for any x in IPS(F), x=sum over i <x,e_i>e_i

(maximal orthonormal set이 basis인건 아닐 수 있다. finite linear combination으로 표현하는게 아니다보니)

-any two maximal orthonormal sets have the same cardinality.

-(Best Approximation)for E:nonempty complete convex subset of IPS(F), for any x in IPS(F) te! x_0 in E s.t. ||x-x_0||=dist(x_0,E)

-for LS:complete of IPS(F), for any x in IPS(F), 위에서 구한 x_0에 대해 x-x_0 in (LS)^ㅗ

-(Projection Theorem)for LS:complete of IPS(F), IPS(F)=direct sum of LS, (LS)^ㅗ

-P_LS:IPS(F)->LS, orthogonal projection map 정의 가능

-P_LS의 성질

-linear

-Im(P_LS)=LS

-idempotent

-ker(P_LS)=(LS)^ㅗ

-(LS가 nonzero)||P_LS||=1

-P_LS in HLT(IPS(F))

-for LS:complete of IPS(F), (LS)^ㅗㅗ=LS

-for X:IPS(F), {x_n}:cv to x, {y_n}:cv to y일 때, <x_n,y_n>:cv to <x,y>(cv라는게 in the sense <,>)

-for D:dense subset of X:IPS(F), for all x in D <x,y>=0이면 y=0

-(Bessel's Inequality)for {u_n}:orthonormal seq in X:IPS(F), for any x in X, (sum from n=1 to n=inf |<x,u_n>|^2) <= ||x||^2

-sum from n=1 to n=inf <x,u_n>u_n이 cv to some y for any x in X

(증명은 y_m:=x - sum from n=1 to n=m |<x,u_n>|u_n , <y_m,y_m>>=0이용)

-(Gram-Schmidt Process)basis의 각 원소가 norm이 1이고 서로 orthogonal하게해서 새 basis를 얻는 process

-cl(IPS(F))(as a metric space, completion)은 HS(F)가 된다.

-IPS(R(std))에서

-f-dim에서

-for f in LT(IPS(R(std))), f:isometry iff f의 MT는 OMT

-IPS(F)가 G-Md이고 G-invariant한 inner product <,>가 있고 LS:G-subMd일 때, (LS)^ㅗ도 G-subMd가 된다.

(IPS(F)가 G-Md이고 G-invariant한 inner product <,>가 있으면, for any g in G, rep(G)(g):unitary된다.)

-IPS1(F)->IPS2(F)관련

-LT(IPS1(F),IPS2(F))관련(X:IPS1(F),Y:IPS2(F),f:LT(X,Y), c in F)

-f:preserve inner product iff f:preserve norm(link)

-Y=X일 때

-f:unitary iff te adj(f) and adj(f):inverse of f

-adj관련

-if S:subspace of X s.t. S:f-invariant and te adj(f), then S^ㅗ:adj(f)-invariant.

-f in HLT(IPS(F))일 때

-for any x in X, <f(x),x>:real

-egv(f):real

-{egv(f,egv_i)}:orthogonal(즉 다른 egv의 eigenvector는 orthogonal)

-{u_n}:countable or finite complete orthonormal seq s.t. u_n:egv(f)이면 대응되는 {egv(f)}는 모든 egv(f)를 포함한다.

             -conti인 f일 때

-||f||=sup over ||x||=1 {|<f(x),x>|}(link)

-

-IPS(F)->F(as VS(F))

-LF관련(X:IPS(F), S:subspace of X, g:S->F, f:V->F)


-IPS1(F), IPS2(F)가 f-dim일 때

-LF관련(X:IPS(F), S:subspace of X, g:S->F, f:V->F)

-f:LF일 때, for any v in X, f(v)=<v,a> for some a in X(Orthonormal basis잡고 표현한거 생각)

({b_i}:orthonormal basis일 때 a=sum ct(f(b_i))b_i라 두면 된다. )

-LT(IPS1(F),IPS2(F))관련(X:IPS1(F),Y:IPS2(F),f:LT(X,Y), c in F)

-X,Y:ipiso iff dim(X)=dim(Y)

-Y=X일 때 

-f:unitary iff f의 matrix 표현 MT_f in some ordered orthonormal basis is a UnMT    

-adj관련

-te! adj(f)

-for B={b1,b2,...,bn} orthonormal basis of X일 때, f의 matrix 표현 MT_f라 할 때 MT_f_(i,j) = <f(b_j),b_i>

-for B={b1,b2,...,bn} orthonormal basis of X일 때, MT_adj(f)=ct(MT_f)

-adj(f1+f2)=adj(f1)+adj(f2)

-adj(cf)=ct(c) * adj(f)

-adj(f1 o f2)=adj(f2) o adj(f1)

-adj(adj(f))=f

-f in HLT(IPS(F))일 때

-HS(F)관련

-for {u_n}:orthonormal seq in X:HS(F), for any x in X일 때 sum from n=1 to n=inf <x,u_n>u_n은 cv to some y in X

(증명은 cauchy인 것만 보이면 되는데 그건 Bessel's inequality의 좌항이 수렴하는 것 이용)

-for LS:closed of HS(F), HS(F)=direct sum of LS, (LS)^ㅗ

-(Riesz Representation Theorem)f:HS(F)->(HS(F))^*, f(x)=<y,x>, f가 isometrical isomorphism, 즉 HS(F) iiso (HS(F))^*, (F=C일 땐 약간 다름)

-HS(F)는 reflexive

-dim(HS(F))=inf일 때

-HS(F):separable관련

-iff |any maximal orthonormal set|=aleph_0

-any two separable infinite-dimensional HS(F) are isomorphic

-X:separable이면 for {u_n}:countable maximal orthonormal set, for any x in X일 때 sum from n=1 to n=inf <x,u_n>u_n = x

-HS1(F)->HS2(F)관련

-LT(HS1(F),HS2(F))관련(X:HS1(F), Y:HS2(F), f:LT(X,Y), c in F)

-Y=X일 때

-adj관련

-f in HLT(HS(F))일 때

-conti인 f일 때

-(Hilbert-Schmidt Theory, Main Theorems)(link1)(link2)(link3)(link4)

:dim(X)=inf이고 f(nonzero map)가 compact이고 injective이면 

-te {(u_n,v_n)} s.t.

-{(u_n,v_n)}:countable

-(u_n,v_n):eigensolution of f

-all u_n are real, gm이 finite, lim n->inf u_n=0

-all eigenvalues of f are in {u_n}

-{v_n}:complete orthonormal seq

(증명과정을 보면 dim(X):not inf여도 비슷한 얘기 가능)

-(Courant Minimax principle)

:X:HS(R)이고 f가 compact이고 strictly monotone이면 

-te {(u_n,v_n)} s.t.

-{(u_n,v_n)}:countable

-(u_n,v_n):eigensolution of f

-all u_n are real, gm이 finite, u_1>=u_2>=...>0, dim(X)=inf이면 lim u_n=0

-all eigenvalues of f are in {u_n}

-{v_n}:complete orthonormal seq

-u_m=max min <f(u),u>, where max over M in L_m = {S교L s.t. L:m-dimensional LS of X}, S={x in X s.t. ||x||=1}, min over u in M

(즉, eigenvalue를 찾는 방법 제시)

+ Recent posts