-About AdMT(G), egv of AdMT(G), λ
-sum of all λ = 0
-sum of all (λ)^2 = 2m
-sum over all i < j λ_G(i)*λ_G(j) = (-m)
-sum of all (λ)^3 = 6t
-ith row sum of AdMT(G) = d(vi)
-ith row sum of (AdMT(G))^2 = d(vi)m(vi)
-(i,j)-entry of (AdMT(G))^k = the distinct number of walk(vi,vj) of length k
-(Characterization of Connected Bipartite)G:connected일 때 TFAE(link)
-G:bipartite
-a:egv of AdMT(G)이면 so does (-a)
-(-specR(AdMT(G))):egv of AdMT(G)
-AdMT(G) has exactly one positive egv iff the non-isolated vertices form a complete multipartite graph(link)
-charP(AdMT(G))의 linear equation은 G의 figure를 보고 바로 작성 가능, λ*xi=sum of all xj s.t. vi~vj
-charP(AdMT(G)) = the prod of all charP(AdMT(C)) where C:connected components of G
-G1 graph-iso G2 iff AdMT(G1) is similar to AdMT(G2) (특히 이 similar에 쓰이는 Invertible MT가 permutation임)
-the spectrum of graph is graph invariant
-하지만 charP(AdMT(G1))=charP(AdMT(G2))라 해서 G1 graph-iso G2가 아닐 수 있음,
-(Same Neighborhoods)
-sub-vertex set V' having same set of neighbors Ν with |V'|=k이면, 0는 λ되고 gm(0)=am(0)=at least k-1
(AdMT(G)는 symmetry이고 따라서 HMT이고 NMT이고 따라서 udgMT이므로 am(λ)=gm(λ)가 성립)
-vi와vj가 have same set of neighbors일 때 vi와 vj를 이어버린다면 resultant graph에서는 -1는 λ되고 multiplicities는 최소 1
-(Neighbor of several pendants)
-v1, v2:pendant이고 same neighbor를 갖는다면, nonzero λ에 대응되는 eigencomponents는 same
-G:connected, G':proper spanning subgraph of G이면 λ_G(1) > λ_G'(1)(using irreducible, nnn matrix property)
-(Recurrence Relation of charP(AdMT(G)))
for e=vivj, charP(AdMT(G)) = charP(AdMT(G-e)) - charP(AdMT(G-vi-vj)) - 2 sum over all trail T containing e charP(AdMT(G-V(T)))
-AdMT(bar(G)) = J - IMT - AdMT(G), where J is a matrix with all entries 1(SdMT랑 비슷하나 다름)
-λ를 찾는 다른 방법
-f:V(G)->R, AdMT(G)f:V(G)->R로 보고 찾는 방법이 있다.
-λ_L(G)(n)) >= -2
-λ_L(G)(1)*IMT - AdMT(G):psd
-G':induced subgraph of G일 때 (link)
-min of egv of AdMT(G) <= min of egv of AdMT(G')
-max of egv of AdMT(G') <= max of egv of AdMT(G)
-(Interlacing, deleting one vertex)
:G'=G-v일 때, λ_G(1)>=λ_G'(1)>=λ_G(2)>=λ_G'(2)>=...>=λ_G'(n-1)>=λ_G(n)(by cauchy-poincare)
-(Upper Bound of λ_G(1))
-λ_G(1) <= Δ_1, with = iff G:regular(link)
(증명은 maximum eigencomponent잡아서 linear equation생각과, =증명은 constant row sum생각)
-G:connected일 때 λ_G(1) <= sqrt(2m -(n-1)δ + (δ-1)Δ) with = iff G graph-iso K_(1,n-1) or G:regular(link)
-G:connected일 때 λ_G(1) <= sqrt(2m - n +1) with = iff G graph-iso K_n or K_(1,n-1)
-G:connected일 때 λ_G(1) <= {(Δ_2 - 1 + sqrt((Δ_2 - 1)^2 + 4Δ_1))/2}, with = iff G:regular or G:(n-1, Δ_2)-semiregular graph with Δ_2 < (n-1)(link)(link)(link)
-G:connected일 때 λ_G(1) <= max over i m(vi)(증명은, D^(-1)AD의 row sum생각)
-G:connected일 때 λ_G(1) <= max over i~j sqrt(m(vi)m(vj)), with = iff G:m(vi):fixed
or G:bipartite with {U,W}, all v in U, m(v):fixed and all w in W, m(w):fixed
(better than above)
(증명은 바로 밑에 것에 D^(-1)AD로 시작하면 됨)
-λ_G(1) <= max over i~j sqrt(d(vi)d(vj)), with = iff G:regular or semiregular bipartite(link1)(link2)
-λ_G(1) <= max over isqrt(d(vi)m(vi)), better than above
(증명은 (AdMT(G))^2의 row sum생각)
-λ_G(1) <= 2 iff G is...(link)
-λ_G(1) < 2 iff G is ...(link)
-(Lower Bound of λ_G(1))
-λ_G(1) >= 2m/n(증명은 Courant-Fischer에다가 x=(1,1,...,1)대입)
-(Lower bound of λ_G(n))
-G:connected일 때 λ_G(n) >= (-1) * sqrt(2m - (n-1)δ + (δ-1)Δ)(link)
-About Energy
-G1,G2가 graph-isomorphic이면 equienergetic, 역은 성립 안함
-if G:non-singular,
-|det(AdMT(G))| >= 1(왜냐하면 구할 때 생각해보면 entry가 모두 0,1이므로, det가 정수이며 nonzero)
-G:non-hypoenergetic
-(Lower Bound of energy(G))
-energy(G) >= 2 * sqrt(m), with = iff G:complete bipartite plus some isolated vertices(link)
-energy(G) >= sqrt( 2m + n(n-1)*(|det(AdMT(G))|)^(2/n) )(link)
-G:non-singular connected일 때 energy(G) >= 2m/n + (n-1) + ln(|det(AdMT(G))| - ln(2m/n),
with = iff G:K_n(link1)(link2)
(better than above)
-(Upper Bounds of energy(G))
-energy(G) <= sqrt(2*m*n) <= 2*m, with = iff G:m개의 K_2 plus some isolated vertices(link)
-About m_(G,A)
-
-About Specific Cases
-G:r-regular iff r는 λ with (1,1,...,1):egv for r
-if G1, G2:r-regular,
-spec(AdMT(G1))={r,λ_G(2),λ_G(3),...,λ_G(n)}
-charP(AdMT(L(G1),x) = (x+2)^(m-n) * charP(AdMT(G1),x-r+2)(link)
-(Sach's Theorem)spec(AdMT(L(G))={λ_G(i) + r - 2, -2 s.t. i=1,2,3,...,n}
(-2의 multiplicity는 m-n)
-spec(AdMT(bar(G1)))={n-r-1, -1-λ_G(2), -1-λ_G(3),..., -1-λ_G(n)}(link)
-bar(G1) have the same egv of G
-if n1=n2=n, then L(L(G1)), L(L(G2)):equienergetic(Sach's Theorem쓰면 됨)
-L^k(G1),L^k(G2):equienergetic for all k >= 2
-if G has no isolated vertices, then G:non-hypoenergetic
-spec(AdMT(G))={n-1, -1, ..., -1} iff G:K_n
-spec(AdMT(K_n))={n-1, -1, ..., -1}(link)
-energy(L(K_n))=2*n*(n-3)
-for n >=4, L(K_n):hyperenergetic
-spec(AdMT(K_(1,n-1)))={sqrt(n-1),0,0,...,0,-sqrt(n-1)}, 0는 n-2개(link)
-G:connected일 때 spec(AdMT(G))={sqrt(n-1),0,0,...,0,-sqrt(n-1)}, 0는 n-2개이면 G는 tree이고
-D(G)=2라면 K_(1,n-1), D(G) != 2라면 G has induced subgraph of P_4
-spec(AdMT(K_(p,q))={sqrt(pq),0,...,0,-sqrt(pq)}, 0은 p+q-2개
-spec(AdMT(the friendship graph on n=2t+1)) = {(1+sqrt(1+8t))/2, 1,1,...,1,-1,-1,...,-1, (1-sqrt(1+8t)/2}, 1은 t-1개, -1은 t개(link)
-spec(AdMT(T(a,b))) = {sqrt(a+b-1), sqrt(b-1), 0,0,...,0, -sqrt(b-1), -sqrt(a+b-1)}, 0은 ab-2a+1개
-spec(AdMT(P_n))={2*cos((pi*j)/(n+1)), where j=1,2,...,n}
-spec(AdMT(C_n))={2*cos((2*pi*j)/n), where j=0,1,...,n-1}
-About Trees
-(Upper Bound of λ_G(1) for Tree)
-G:tree with n>2, then λ_G(1) <= sqrt( (n-1) - {(Δ+Δ'-1)-sqrt((Δ+Δ'-1)^2 - 4(Δ-1)(Δ'-1))}/2 )
where v1 s.t. d(v1)=Δ, Δ' := max over k~1 d(vk)(link)
-(Lower Bound of λ_G(1) for Tree)
-G:tree with a vertex v s.t. e(v)<=2일 때 λ_G(1) >= sqrt(d(v)+m(v)-1) (꼭 λ_G(1)이 아니라 nonzero λ이면 성립)(link)
-G:tree 이면 λ_G(1) >= max over i sqrt(d(vi)+m(vi)-1) using above and interlacing property
-(Lower Bound of λ_G(2) for Tree)
-G:tree with n>2, then λ_G(2) >= sqrt( {(Δ+Δ'-1) - sqrt((Δ+Δ'-1)^2 - 4(Δ-1)(Δ'-1))}/2 )
where v1 s.t. d(v1)=Δ, Δ' := max over k~1 d(vk)(link)
-About m_(T,A)
-m_(T,A)(λ) <= p(T) - 1(link)
-if q(T) != 1 and λ != 0, then m_(T,A)(λ) <= q(T) - 1(link)
-p(T) - q(T) <= m_(T,A)(0) <= p(T) - 1
-About IcMT(G)
-if the inner product of distinct two columns is nonzero, then the value is equal to the number of common vertices of corresponding edges
-rt(IcMT(G)) * IcMT(G) = 2IMT +AdMT(L(G))
-if the inner product of distinct two rows is nonzero, then the value is equal to the number of edges joining the corresponding vertices
-IcMT(G) * rt(IcMT(G)) = sLap(G)
-rank(IcMT(G))= n - |# of connected components|
-About dIcMT(G)
-|rt(dIcMT(G)) * dIcMT(G) - 2*IMT| = AdMT(L(G))
-dIcMT(G) * rt(dIcMT(G)) = Lap(G)(각 edge의 orientation이 어떻든간에)
'수학 > 기본' 카테고리의 다른 글
수학정리(Applications, Lap(G), sLap(G)) (0) | 2016.02.29 |
---|---|
수학정리(Applications, Distance, Index) (0) | 2016.02.29 |
수학정리(Examples, Exercises) (0) | 2016.02.29 |
수학정리(Applications, Basic Graph Theory) (0) | 2016.02.29 |
수학정리(Applications, Combinatorics) (0) | 2016.02.29 |