*수학
미분적분학
-spivak, Calculus
-James Stewart, Calculus:Concepts and Contexts
선형대수학
-이상구, 선형대수학
-Gilbert Strang, Linear algebra and its applications
확률및통계
-Alberto leon-garcia, Probability, statistics, and random processes for Electrical Engineering.
정수론
-Kenneth Rosen, Elementary Number theory and its applications
이산수학
-Richard Johnsonbaugh, Discrete Mathematics
기하학개론
-Marvin Jay Greenberg, Euclidean and non-euclidean geometries:development and history
미분방정식
-Martin Braun, Differential equations and their applications
해석학
-Wade, Introduction to analysis
행렬론
-Kwak and Hong, Linear algebra
공학수학
-Erwin Kreyszig, Advanced Engineering Mathematics
실변수함수론
-Antoni Zygmund, Measure and Integral
-(대학원)Royden, Real analysis
대수학
-Fraleigh, a first course in abstract algebra
-(대학원)Dummit, Abstract Algebra
보험수학
-Newton, Actuarial mathematics
복소해석학
-Herb silverman, Complex analysis
위상수학
-Munkres, Topology
조합 및 그래프이론
-Bona, A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory
실해석학
-Walter Rudin, Real and complex analysis
응용미분방정식
-Zill, Differential equations with boundary value problems
르베그적분론
-Frank jones, Lebesgue integration on euclidean space
복소수함수론
-Stein, Complex analysis
계산적금융수학
-Desmond Higham, An introduction to Financial Option Valuation
수치해석학
-곽도영, Numerical analysis(Lecture notes)
확률론
-Resnick, A probability path
미분기하학
-John Lee, Introduction to smooth manifolds
군표현론
-Bruce Sagan, Symmetric groups
대수적 위상수학
-Allen harcher, Algebraic topology
대수적 그래프이론
-Godsil, Algebraic graph theory
*물리
일반물리학
-Halliday, Fundamentals of physics
전자기학
-Griffiths, Introduction to Electrodynamics
일반역학
-Marion, Classical dynamics of particles and systems
수리물리학
-Afken, Essential Mathematical Methods for Physicists