Chapter 1 What is CMT?
*Def
walk
path(walk와의 차이는 distinct vertices)
connected graph
matching, k-matching, matching number
vertex-cover, cover number
K_n, complete graph
K_no, complete graph with all loops
K_n*, complete digraph with all loops
G(MT), called the Konig digraph
IcMT(configuration of X)
MT(nxn):reducible or irreducible
nnn irreducible중에서
primitive MT
the exponent of primitive MT?
imprimitive MT, 이경우 index of imprimitivity 정의
G1,G2:cospectral if spec(A(G))=spec(A(G'))
IcMT(G), (1,0) matrix
*Thm
Principal tools of Combinatorics
-Mathematical Induction
-Pigeonhole Principle
-Inclusion-Exclusion Principle
-The methods of recurrence relations and generating functions
-Graph Theory
-Burnside's Theorem
-Polya Enumeration Theorem
각각 내용 알기, 특히 Exponential Generating Functions관련해서 내용정리 추가 필요
Tree의 equivalent def
-connected acyclic
-for distinct u,v in V(G), te! path from u to v
-connected with n-1 edges
-connected and removing any edge makes G disconnected
G:bipartite이면 cover number = matching number
From Matrix to graph
no need square(invariant for PAQ, like rank)
MT(mxn) -> K_(m,n)의 subgraph, ker(MT), bar(ker(MT)), bar(ker(MT))의 경우 weigted로도 볼 수 있는데 그 경우 bar(ker(MT))에서 0는 no edge로 보면 됨
MT(mxn) -> G(MT), K_(m,n)의 digraph 형태, weight있는 경우
MT(nxn)의 경우 그냥 G(MT)보고 det(MT)를 wt(all 1-factors)로 묘사가능
square(invariant for PArt(P), like egv)
SMT(nxn) -> K_no의 subgraph, ket(MT), bar(ker(MT)), weighted로도 볼 수 있음, bar(ker(MT))에서 0는 no edge로 보면 됨
MT(nxn) -> K_n*의 subgraph, ker(MT), bar(ker(MT)), weighted로도 볼 수 있음, bar(ker(MT))에서 0는 no edge로 보면 됨
From (di)graph to matrix
(1,0)-A(G)
arc가 있냐 없냐로 1,0
det(A(G))=(-1)^n * wt(D_n),
where D_n:={all 1-factor of σ, σ in S_n},
wt(D_n)=sum over all σ wt(F_σ),
wt(F_σ)=sign(σ) * prod over all i=1 to i=n a_(i,σ(i))
따라서 (di)graph의 형태를 보고 det구할 수 있다. cycles
A(G)^k의 (i,j)원소의 의미는 the number of walks of length k from i to j
IcMT(G)
rt(IcMT(G))*IcMT(G) = sLap(G)
det, perm using IcMT
det(MT(nxn))=W^1 W^2 ... W^n, W^i:(n choose i-1)x(n choose i) using (i+1)th row element in MT
perm(MT(nxn))=W^1 W^2 ... W^n, W^i:(n choose i-1)x(n choose i) using (i+1)th row element in MT
Perron Theorem for positive MT
About irreducible
MT:irreducible
iff G(MT):strongly connected, (G(MT):K_n*의 subgraph, unweighted directed)
About primitive MT
the index of imprimitive = gcd(the lengths of all directed cycles in G(MT))
MT:primitive
iff lim m->inf (MT/specR(MT))^m exists, the limit = (p*rt(q))/(rt(q)*p) > 0, where p:perron for MT, q:perron for rt(MT)
iff the index of imprimitive = 1
iff gcd(the lengths of all directed cycles in G(MT)) = 1, (G(MT):K_n*의 subgraph, unweighted directed)
iff MT^m > 0 for some m, called the exponent
Perron-Frobenius Theorem for irreducible NNN MT
'수학 > 기타수학' 카테고리의 다른 글
CMT 시험대비2 (0) | 2016.12.05 |
---|---|
CMT 시험대비 (0) | 2016.12.05 |
Generative VS Discriminative Model (0) | 2016.05.23 |
Decision Theory (0) | 2016.05.23 |
함수해석학(2016_1)수업정리(방학때 옮길 것) (0) | 2016.05.19 |