*DEF
algebraic over F
transcendental over F
(monic)irreducible polynomial for α over F
degree of α over F
simple extension of F
vector space over F
span, dimension, linearly independent over F, basis for V over F,
algebraic extension of F
finite extension of F
the algebraic closure of F in E
algebraically closed field
a algebraic closure of F
*THM
Kronecker's Theorem
FEF이면 AEF
AEF가 FEF이다 iff AEF=F(α1,α2,...,ακ) for some α1, α2, ..., ακ in E
About finite fields
Z_p is finite field of order p
About Existence of finite fields
char(F)=p이면 x^p^n - x has p^n distinct zeros in ac(F)
GF(p^n) exists
All finite fields of order p^n are isomorphic
About structures of finite fields
F:finite, E:FEF of F, [E:F]=n
char(F)=p and |F|=p^n for some n and F={x in ac(Z_p) s.t. x^p^n - x in Z_p[x]} and te irreducible poly f(x) in F[x] of degree n
char(E)=p and |E|=|F|^n and E:simple extension of F
따라서 정리하면,
이미 알고 있는 finite fields는 Z_p가 있다.
ac(Z_p)에서 p^n order finite field를 항상 만들 수 있다. GF(p^n)
하지만 임의의 finite field는 더 넓은 집합
임의의 finite field F의 char는 p인걸 알고 따라서 order는 p^n인걸 알고 이것은 GF(p^n)과 isomorphic
기타 부가적인 내용:E:FEF of finite field F일 때 |E|=|F|^n with n=[E:F] and E:simple extension of F
*HW
*Additional Problems
Prove that x3 - nx + 2 in Z[x] is irreducible over Z
(n is an integer s.t. it is not equal to -1, 3, 5)
Determine the degree of the extension Q((3+21/2)1/2) over Q
p:any prime, a:nonzero element in Z_p, Prove that x^p - x + a is irreducible over Z_p
V={0}의 basis는 empty set, 따라서 dimension = 0
x^4 + 1 is irreducible in Z[x], reducible over Z_p for all prime p
char(F)=0이면 E:FEF of F는 simple extension of F
char(F)=p이고 E:FEF of F인데 not simple인 예 존재, F=ac(Z_p)(x^p,y^p), E=ac(Z_p)(x,y), [E:F]=p^2
'기타 > 기타' 카테고리의 다른 글
혼자서 집짓기 (0) | 2018.04.26 |
---|---|
논문작성법및연구윤리, 노상도 (0) | 2016.10.23 |
프랑스 대입시험 바칼로레아 기출문제 (0) | 2014.02.07 |