NM:normal인 M
pdM:positive-definite M(M(C)일 때랑, M(R)일 때 정의가 다름)
psdM:positive-semidefinite M(M(C)일 때랑, M(R)일 때 정의가 다름)
HM:Hermitian M
UM:Unitary M
LTM:lower triangular matrix
UTM:uppwer triangular matrix
conj(M):conjugate transpose of M
inv(M):inverse of M
M_(i,j):M의 (i,j) entry
symM:Symmetric matrix (Real Matrix만을 가리킴)
*Matrix의 property관련
Spec(M):M의 eigenvalues를 원소로하는 집합
SpecR(M):M의 Spectral Radius
rank(M):rank of M
det(M):determinant of M
egv(M):M의 eigenvalue
egv(M,egv):M의 eigenvalue의 eigenvector(normalized된 걸 가리킴)
egS(M,egv):M의 eigenvalue의 eigenspace
sgv(M):singular value of M
JCF(M):M의 Jordan Canonical Form
SMF(M):M의 Smith Canonical Form
CharPoly(M):M의 characteristic Polynomial
MinPoly(M):M의 minimal polynomial
-------------------------------------------------------------------------------------------------------------------------
Topological Space
nbd(x):neighbourhood of x
open(x):open set containing x
nbd(E):neighbourhood of S
NTS:Normal Topological Space
Gd:G-delta set, i.e. countable intersection of open sets.
T2S:T2 space
R(sTS):The Field of Real numbers with the standard topology
LK:locally compact
KS:compact support
KC:compact closure
lptK:Limit point compact
seqK:sequentially compact
cl(E):closure of E
KGd:Compact and G-delta
LKT2S:Locally Compact T2 Space
cl(LKT2S):one-point compactification of LKT2S
-------------------------------------------------------------------------------------------------------------------------
Topological Vector Space
bdd:bounded subset
-------------------------------------------------------------------------------------------------------------------------
Normed Vector Space
|| ||:norm on nvs
nbdd:norm bounded subset
'제거된 것' 카테고리의 다른 글
Normed Vector Space (0) | 2013.05.14 |
---|---|
Topological Vector Space (0) | 2013.05.14 |
Vector Space (0) | 2013.05.14 |
Real Analysis Outer Measure (0) | 2013.05.13 |
운동계획 (0) | 2013.04.21 |